
2018/7/22 Weighted random sampling with replacement with dynamic weights | Tangentially / A Machine Learning Blog

https://www.aarondefazio.com/tangentially/?p=58 1/5

Weighted random sampling from a set is a common problem in applications, and in general li‐
brary support for it is good when you can fix the weights in advance. In applications it is more
common to want to change the weight of each instance right after you sample it though. This
seemingly simple operation doesn't seem to be supported in any of the random number libraries
I've looked at.

If you try googling for a solution, you find lots of papers and stack overflow posts on reservoir
sampling, but nothing useful for solving the problem. After digging through Knuth and reading
old paywalled papers, I've managed to piece together an approach that is extremely fast and easy
to implement. This post details that method and provides a simple Python implementation. I have
made a fast Cython version availiable on github also.

First some notation. We want to sample an index 0 to N-1, according to an array of weights w[i].
These weights form the unnormalized probability distribution we want to sample from, i.e. each
instance i should have probability w[i]/sum(w) of being chosen. Ideally we want an algorithm that
gives constant time sampling and constant time weight mutation operations.

The simple slow approach: rejection sampling
Normally I avoid wasting time on approaches that don't work well in practice, however the simple
rejection sampling approach to the problem turns out to be the vital building block of the algo‐
rithms that do work.
The rejection sampling approach is only a few lines of Python:

1

2

3

4

5

6

7

8

9

10

w = [1,4,2,5] # Some data

w_max = max(w)

n = len(w)

while True:

 idx = random.randrange(n)

 u = w_max*random.random()

 if u <= w[idx]:

 break

print idx

WEIGHTED RANDOM SAMPLING
WITH REPLACEMENT WITH
DYNAMIC WEIGHTS

FEBRUARY 14, 2016 | AARON DEFAZIO | LEAVE A COMMENT

Tangentially / A Machine Learning Blog

https://github.com/adefazio/sampler
https://www.aarondefazio.com/tangentially/?p=58
https://www.aarondefazio.com/tangentially/?author=1
https://www.aarondefazio.com/tangentially/

2018/7/22 Weighted random sampling with replacement with dynamic weights | Tangentially / A Machine Learning Blog

https://www.aarondefazio.com/tangentially/?p=58 2/5

view rawrejection.py hosted with by GitHub

The idea is simple. We sample uniformly from the indices, then do a rejection sampling correction
to account for the actual non-uniformity of the data. The best way to visualise what it's doing is to
consider it as picking a point in 2 dimensions uniformly, then doing a reject or accept operation
based on if the point is under the "graph" of the distribution or not. This is shown schematically
as the yellow shaded regions below.

reject
reject

reject
reject reject

reject reject
reject

[0,1]
U

0 1 2 3 4 5 6 7 8

The general idea of rejection sampling and this graph interpretation is quite subtle, and I'm not
going to attempt to explain it here. If you just stare at it for a while you should be able to convince
your self that it works.

Unfortunately, rejection sampling like this is not practical when the weights are uneven. The re‐
jection probability depends on the magnitude of the largest weight compared to the average, and
that can be very large. Imagine if the first eight boxes above where %1 full and the last 100% full.
It's going to reject roughly 80% of the time. It can of course be much worse when n is larger.

Making it practical
Rejection sampling can be very fast when all the weights are similar. For instance, suppose all the
weights are in the interval [1,2]. Then the acceptance probability w[i]/w_max is always more than
half, and the expected number of loops until acceptance is at most 2. It's not only expected con‐
stant time, but it's fast in practice as well. More generally, this is true whenever the interval is of
the form [2^i, 2^(i+1)].
This leads to the idea used by most of the practical methods: group the data into "levels" where
each level is an interval of that form. We can then sample a level, followed by sampling within the
level with rejection sampling. Matis et al. (2003) show that the level sampling can be done in
O(log*(n)) time, where log* is the iterated logarithm, a slowly growing function which is always no
more than 5. Effectively it is an expected constant time sampling scheme.

We don't recommend using the Matis scheme though, as its practical performance is hampered by
its complexity. Instead, we suggest using a method that has a (weak) dependence on the size of the
weights, which we detail below.

Consider the intervals [2^i, 2^(i+1)]. The number of unique intervals ("levels") we need to consider
is just the log2 of the ratio of the largest and smallest weights, which on practical problems won't
be more than 20, corresponding to a 1 to 1 million difference. The extra overhead of the Matis
method is not worth it to reduce the constant from 20 to 5. In practice the Matis method requires
building a tree structure and updating it whenever the weights change, which is way slower than
traversing a 20 element sequential array.

https://gist.github.com/adefazio/9f13e5d2d5e5d2618d40/raw/21bc57b49a9a0780322bb4b58bc0db92c68ddd81/rejection.py
https://gist.github.com/adefazio/9f13e5d2d5e5d2618d40#file-rejection-py
https://github.com/
https://en.wikipedia.org/wiki/Rejection_sampling

2018/7/22 Weighted random sampling with replacement with dynamic weights | Tangentially / A Machine Learning Blog

https://www.aarondefazio.com/tangentially/?p=58 3/5

view raw

Lets be a little more concrete. The algorithm will maintain a list of levels, in order of largest to
smallest. Each level i consists of a list of the elements that fall within that levels range: [2^i,
2^(i+1)]. The list for each level need not be sorted or otherwise ordered. To sample an instance
from the set, we sample a level, then we perform rejection sampling within that level. In Python, it
looks like:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

sampler_sample.py hosted with by GitHub

The full class including weight updating is on github. Notice that we use a linear-time algorithm
for sampling the levels (A cumulative distribution table lookup). Alternative methods could be
used, such as a balanced binary tree or Walker's algorithm (see below). The only difficulty is that
we want to change the weight of an element potentially after every sample, so any pre-computa‐
tion needed for the level sampling needs to be fast. It doesn't seem worth it in practice to use
something more complicated here since the number of levels is so small (as mentioned above

 def sample(self):

 u = random.uniform(high=self.total_weight)

 # Sample a level using the CDF method

 cumulative_weight = 0

 for i in range(self.nlevels):

 cumulative_weight += self.level_weights[i]

 level = i

 if u < cumulative_weight:

 break

 # Now sample within the level using rejection sampling

 level_size = len(self.level_buckets[level])

 level_max = self.level_max[level]

 while True:

 idx_in_level = random.randint(0, level_size)

 idx = self.level_buckets[level][idx_in_level]

 idx_weight = self.weights[idx]

 u_lvl = random.uniform(high=level_max)

 if u_lvl <= idx_weight:

 break

 return idx

https://gist.github.com/adefazio/69a540bab7f699cff84b/raw/b72221a8f8da33627c75ae04fffe6cd443738e72/sampler_sample.py
https://gist.github.com/adefazio/69a540bab7f699cff84b#file-sampler_sample-py
https://github.com/
https://github.com/adefazio/sampler/blob/master/sampler.py

2018/7/22 Weighted random sampling with replacement with dynamic weights | Tangentially / A Machine Learning Blog

https://www.aarondefazio.com/tangentially/?p=58 4/5

usually less than 20).

[1,2]

[2,4]

[4,8]

[8,16]

[1/2,1]

CDF

7 10

2

4 6 3 1

9

8 5

Set indicesLevel sets

1. CDF Sample level 2. rejection sample within level

Enhancements

A few small changes are possible to improve the usability and performance. The rejection sam‐
pling actually only needs a single random sample instead of 2. We can just take a U[0,1] sample,
then multiply by level_size. The integer part is the idx_in_level and the remainder is the u_lvl
part.
When updating weights, we need to delete elements potentially from the middle of a levels index
list. For example, imagine we need to move element 6 from the [2,4] bucket to the [1,2] bucket in
the above diagram. We need to store the indices in a contiguous array for fast O(1) lookup, so
initially this would look like a problem. However, since the order within the lists doesn't matter,
we can actually take the last element of the list, move it to the location we want to delete from,
then delete from the end of the list.

In the sample code given, we keep a level_max array which just contains the upper bounds for
each level. With a little extra code we could instead change this to be the largest element that has
been in that bucket so far. This could lower the rejection rate a little at the cost of a few more
operations maintaining the level_max array.

Other methods
Marsaglia et al. 2004 describe an early method that also treats the data in levels, but instead of
rejection sampling it spreads each datapoint's probability mass across multiple levels. I believe
upating the weights under their scheme would be quite complex, although in big O notation it
should be roughly the same as the algorithm I described above.

Walker's alias method

2018/7/22 Weighted random sampling with replacement with dynamic weights | Tangentially / A Machine Learning Blog

https://www.aarondefazio.com/tangentially/?p=58 5/5

This post is concerned with methods can be used when we wish to modify the weights dynamically
as the algorithm runs. However, I would be remise to not mention the alias method, which given a
fixed set of weights at initialization time constructs a table that allows extremely efficient con‐
stant time sampling without any of the complexity of the other approaches I mentioned.
The key idea is simple. Take a table like that used in the rejection sampling method. Instead of
normalizing each bucket by w_max, normalize by w(sum)/n. When doing this, some buckets will
overflow, as the probability within them could be larger than w(sum)/n. So we take the excess,
and spread it amoung those buckets that are not full. It's not too difficult to do this in such a way
that each bucket is exactly full, and contains only two indices within it. Now when we go to sam‐
ple, we pick a bucket uniformly as before, but within the bucket there is no longer a rejection op‐
tion, just two indices to choose from.

Unfortunately, there is no fast way to modify the table built by Walker's method when we change
just a single weight. I've not been able to find any methods in the literature that manage to do so
efficently. Given it's simplicity, there are a few implementations of Walker's method out there, for
example a Python version here.

https://gist.github.com/ntamas/1109133

